Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Lin Zhang,* Yong-Ping Yan, Wen-Hong Wu and Lai-Tao Luo

School of Chemistry and Chemical Industry, NanChang University, NanChang 330031, People's Republic of China

Correspondence e-mail: yanyongping6@126.com

Key indicators

Single-crystal X-ray study T = 292 KMean σ (C–C) = 0.004 Å R factor = 0.042 wR factor = 0.120 Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

8-(Tolyl-4-sulfonyloxy)quinolinium toluene-4-sulfonate

In the cation of the title compound, $C_{16}H_{14}NO_3S^+ \cdot C_7H_7O_3S^-$, the quinolinium ring system makes a dihedral angle of 69.14 (9)° with the benzene ring.

Received 4 November 2006 Accepted 4 December 2006

Comment

Derivatives of 8-hydroxyquinoline are known for their antiamoebic, antibacterial and antifungal activities (Balasubramanian & Thomas Muthiah, 1996; Khan *et al.*, 1994; Vembu *et al.*, 2003). The title compound, (I), is an intermediate in the synthesis of 8-hydroxyquinoline derivatives (Lee *et al.*, 2001). We report here the crystal structure of (I) (Fig. 1).

The benzene C10–C15 and C22–C17 planes make dihedral angles of 69.14 (9) and 78.31 (6)°, respectively, with the C1–C9/N1 plane. The dihedral angle between the two benzene rings is $61.74 (9)^{\circ}$.

In the crystal structure of (I), there are $C-H\cdots O$ and $N-H\cdots O$ hydrogen bonds (Table 1).

Experimental

A solution of 8-hydroxyquinoline (6.9 mmol) in dichloromethane (6 ml) was added dropwise to 4-toluenesulfonyl chloride (20.5 mmol) and the mixture was refluxed in air for 4 h. The resultant precipitate was filtered off and the solution was evaporated to give (I) as a deep-yellow solid. Single crystals suitable for X-ray diffraction were obtained by recrystallization from an acetone solution.

© 2007 International Union of Crystallography All rights reserved

organic papers

Crystal data

 $\begin{array}{l} C_{16}H_{14}NO_{3}S^{+}\cdot C_{7}H_{7}O_{3}S^{-}\\ M_{r}=471.53\\ \text{Triclinic, }P\overline{1}\\ a=9.643~(5)~\text{\AA}\\ b=10.852~(5)~\text{\AA}\\ c=11.421~(5)~\text{\AA}\\ \alpha=105.470~(5)^{\circ}\\ \beta=97.976~(5)^{\circ}\\ \gamma=99.295~(5)^{\circ} \end{array}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.886, T_{\max} = 0.936$

Refinement

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1\cdots O4^{i}$	0.86	1.89	2.703 (3)	158
$C4-H4\cdots O3^{ii}$	0.93	2.33	3.256 (3)	173
$C8-H8\cdots O5^{i}$	0.93	2.54	3.358 (4)	146
$C15-H15\cdots O4^{i}$	0.93	2.49	3.162 (3)	130
$C18{-}H18{\cdot}{\cdot}{\cdot}O5^i$	0.93	2.59	3.288 (3)	132

V = 1115.8 (9) Å³

 $D_x = 1.404 \text{ Mg m}^{-3}$

 $0.45 \times 0.26 \times 0.24$ mm

8405 measured reflections

4111 independent reflections 3208 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.28 \text{ mm}^-$

T = 292 (2) K

Block, yellow

 $\begin{array}{l} R_{\rm int}=0.019\\ \theta_{\rm max}=25.5^\circ\end{array}$

Z = 2

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x - 1, y, z.

H atoms were positioned geometrically, with C–H = 0.93–0.96 Å, and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics:

Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atomic numbering.

SHELXTL (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

Thanks are expressed to Huan-Xia Zhang for her help in the crystal analysis and the preparation of the paper.

References

Balasubramanian, T. P. & Thomas Muthiah, P. (1996). Acta Cryst. C52, 1017– 1019.

- Bruker (1997). SMART and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.
- Khan, K. A., Khan, S. A., Khalid, S. M., Ahmed, A., Siddiqui, B. S., Saleem, R., Siddiqui, S. & Faizi, S. (1994). Arzneim.-Forsch. 44, 972–975.
- Lee, Y. H., Seo, J., Yoon, I., Park, K. & Lee, S. S. (2001). Anal. Sci. 17, 805–806. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003). Acta Cryst. E59, 0776–0779.